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An Application of Fast Integral Wavelet Transform
to Waveguide Mode Identification
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Abstract—We introduce a very efficient method for computing
the integral wavelet transform, with any compactly supported
spline-wavelet as the analyzing wavelet, on a dense set of the
time-scale domain. While the mathematical analysis of this algo-
rithm will be presented elsewhere, the objective of this paper
is to describe the computational scheme along with its com-
puter implementation, and to demonstrate its effectiveness in the
identification of mode propagation in a rectangular waveguide.

Index Terms— Wavelet transform, waveguide modes.

I. INTRODUCTION

HE INTEGRAL wavelet transform (IWT) is a time-

frequency localization tool with automatic “zoom-in™
and “zoom-out” bandpass filter performance. However, since
it is a mapping of functions (or analog signals) of one
variable (the time domain) to functions of two variables (the
time-scale domain), computation of the IWT in all of the
time-scale domain is certainly very expensive. Although the
wavelet decomposition algorithm, based on certain digital

samples—say f(k/2V), k = -+, ~1,0,1,--- of some signal
f(t)—can be applied with real time capability to give the
IWT values of f(t) at (k/27, 1/29), k =---, =1,0, 1, ---, and

j < N — 1, this information on the IWT of f(t), on such a
sparse set of dyadic points, is sometimes insufficient to give
very good time-frequency analysis of the signal f(¢).

The objective of this paper is to describe a very efficient
algorithm that we just developed [24] for computing the IWT
of f(¢) on a dense set of the time-scale domain, without
going into the somewhat complicated mathematical details.
In addition, we include several examples to elucidate the
application of this algorithm.

In applications to discrete data sets, wavelets may be consid-
ered as basis functions generated by dilations and translations
of a single function. Analogous to Fourier analysis, there are
wavelet series (WS) and integral wavelet transforms. However,
unlike Fourier analysis, WS and IWT are intimately related
in wavelet analysis. Fourier analysis is a global analysis
in the sense that each frequency (time) component of the
function is influenced by all the time (frequency) components
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of the function. On the other hand, wavelet analysis is a
local analysis. Such comparisons are very well reported in
[11]-[13].

Wavelets have drawn a lot of attention in recent years
because of their versatility in many areas of engineering,
physics, and mathematics. From the engineering point of
view, there are broadly two different objectives of applying
wavelet analysis. In one, the function (continuous or discrete)
is known in some domain (time, for example) and one is
interested in observing the behavior of the function in the
time-frequency domain. In the other, the function is not known
explicitly but some of its properties are known along with
the function behavior on a certain known set of points. Here
the objective is to specify the function. Significant work has
been reported for the former case. As to the applications to
electrical engineering, although wavelets have a great impact
in the area of signal processing, the literature is scant on BVP.
Work in integral equations has been reported in [1]-[5]. It
has been demonstrated that the use of wavelet bases results
in sparse matrix for integral operators. In [6]-[10], problems
related to differential operator and bounded interval wavelets
are discussed.

There have been a few papers related to wavelets in the
area of Electromagnetics [13]-[17]. In [13], [18] it has been
demonstrated that time-frequency analysis provides better in-
formation about the EM scattering phenomena. Steinberg and
Leviatan [16] have used the Battle-Lemarié spline-wavelets
as basis in the method of moments formulation. Although
any Battle-Lemarié wavelet generates an orthogonal basis, it
has poor decay at infinity and does not have closed form
expression. On the other hand., compactly supported spline-
wavelets [11], [19]. which will be used in this paper are
semi-orthogonal with explicit closed form expressions. Here,
we will point out that the coefficients of the dual of these
wavelets are infinite although they decay exponentially fast.
It will be shown in this paper that by mapping the function
into some proper subspace, one can circumvent the use of dual
wavelets to compute the wavelet coefficients (WC). Multigrid
FEM is another area in which wavelets are being applied.
Muliilevel discretization concept has been used in [20] in the
context of method of moments.

In [13], a brief discussion on multiresolution analysis
(MRA) has been presented, but it has not been used to
compute the WC. Instead, FFT has been applied to compute
the IWT with Kaiser-Bessel window as wavelet; the same
window has been used in [18] to compute the short-time
Fourier transform (STFT). In MRA-based computation of
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the WC, the complexity, usually defined in terms of number
of multiplications and additions per point, remain the same
irrespective of the scale, which is not the case with FFT-based
method. This aspect will be further elaborated in Sections
Il and IV.

The rest of this paper is organized as follows. Section II
begins with a brief introduction of the notion of MRA. The
integral wavelet transform and the standard wavelet decom-
position algorithm are presented. A few important properties
of splines and spline wavelets follow next. Wavelet transform
gives local time-scale information. In order to translate this
into time-frequency information, the scale parameter needs to
be mapped into frequency. A method is proposed to obtain
such mapping. In Section III, we present a technique to
compute the WC with finer time-scale resolution. A few
examples are discussed in Section IV that include the IWT of
the experimental data obtained for the transmission coefficient
of a rectangular waveguide. The results are obtained using
linear and cubic splines and their corresponding compactly
supported wavelets. With a little more work, the method can
be extended to splines of arbitrary order.

II. MRA AND WAVELET DECOMPOSITION

A. MRA and Wavelet Decomposition

As the name suggests, in MRA, a function is viewed at
various levels of approximations or different resolutions. The
idea was developed by Meyer [21] and Mallat [22]. Any
cardinal B-spline generates an MRA. More precisely, consider
the integer translates of a function ¢ € L% := L%(R) (finite
energy function). This collection constitutes an approximation
space Vjy, where for each j, we use the notation

Vyi=closi2(¢pjr :k€Z), jel M

with ¢, (¢) == 29/2¢(29t — k) and Z := {---, -1, 0, 1, ---}.
Here the function ¢ is a cardinal B-spline with integer knots
of an appropriate order, or more generally, a scaling function.
The subspaces {V;} are nested, namely

el AN el 7N el C I IR (2)

For a precise definition of MRA, see [11, p. 16].
For each j, since V, C V;y;, we have the orthogonal
complementary wavelet subspace W, such that
Via=V,ew, 3)
where

W;i=closp:(¢,r: k€Z), jel )

and v, is defined similarly to ¢, .

It is to be observed here that while {V;} form a nested
sequence of subspaces, the subspaces {W,} are mutually
orthogonal. Consequently,

VinVe =YV,
WjﬂWg 2{0}

0>
j#L ®)

At any level j, V, gives the smoothing “approximation™ and
W, reveals the “details” of the original function.

N, (©)

0 1 t

Fig. 1. Ny, the spline of order 1.

B. Splines and Spline Wavelets

In this paper, we use cardinal B-splines N, to be the scaling
functions. Here, for any positive integer m, called the order of
the B-spline N,,, a fast computation of N,,(t) can be achieved
by using the following formula [11, p. 86] recursively until
we arrive at

the first-order B-spline Ny, which is simply the characteristic
function x(p,1)- (See Fig. 1.)

One of the most important properties of a B-spline is “total
positivity” [23, p. 7], by virtue of which the function in terms
of a B-spline series follows the shape of the “data.” For
instance, if g(t) = ¥, a; Ny (t — 7), then

a, >0V =g(t) >0
o 1 (increasing) = ¢g(t) T, and
a,(convex) = ¢(t) convex. (7)
Furthermore, the number of sign changes of g(¢) does not
exceed that of the coefficient sequence {o;}.

Any function f(¢) € L? can be mapped into a spline space

of order m as

FO) = fua(®) =) e o@Mt—k)eVar,  (8)
k

where, as mentioned before, we will choose ¢ =N,,,. For m =
1, we have an orthonormal basis, but for m > 1, {N,,(t = k)}
1s no longer orthonormal, but is a so-called Riesz or stable
basis [11] of Vy. Hence, for m > 1, in order to get {cM}, one
needs to have the dual of ¢, ¢. By duality, we mean

($(- — k), §(- = £)) = bpe, allk, 2, ©)
where 6 is the Kronecker delta

e, — { 1 ifk=/¢
kL = .
0 otherwise.

Orthonormal bases are self-dual. Using (8) and (9), we have
Ci,u = 2]”/ f]y[ (t)QE(QA’It e k) dt.

Observe that 2* appears in (10) because of the biorthogonality

10)
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property, namely

(1,hr Bem) = 65,08k.m- (11)
Corresponding to each scaling function, we have a wavelet.

By means of the so-called “two scale relations,” one can
construct a wavelet as follows:
)= pep(2t—k
k
(12)

= a2t —k
k

For m** order splines, we have [11], [19]:
—m~+1 m A
o — { 2 ( . ) 0<k<m
0 otherwise,

and

(—1)k2—m+1 Z ( )Nom k+1-4)

k_O,l, ,3m—2. (13)

A function f(¢) can also be represented in terms of some
wavelet 1. namely

Ft)y =" diy(2/t — k) (14)
ik

where

—29/ FOP@1t— k) da, (15)

and 7 is the dual of ¢ defined in a similar way as &, the dual of
¢. Unlike “total positivity” of splines, the wavelets have a so-
called “complete oscillation™ property by virtue of which the
wavelet coefficients {277/2 d}} help in detecting any change
in the function behavior. Note that 27//2 has been used as the
multiplier so that WC represent IWT of the function at dyadic
positions and binary scales. (See (23).)

One of the most important properties of the mnth-order spline
wavelet 1,,, is that their moments with respect to lower degree
polynomials are zero. More precisely,

/00 P (t) dt = 0,

— 00

p=0,1,---,m—1. (16)

The importance of (16) will become more apparent in Section
IV.

Fig. 2 shows the linear (m = 2) and cubic (m = 4) splines
with their corresponding wavelets in the time domain. Their
frequency-domain representations are shown in Fig. 3. It is
obvious from Fig. 3 that scaling functions behave as lowpass
filters, whereas wavelets exhibit bandpass filter characteristics.

Equations (10) and (15) indicate that the coefficients are
obtained by convolving the function with scaling function and
wavelet. This amounts to, from the filter-bank theory, passing
the function (signal) through a lowpass filter for {cx} and a
bandpass filter for {dj}.

C. The Integral Wavelet Transform (IWT)
and Wavelet Decomposition

The IWT of a function f(t) € L* with respect to some
analyzing wavelet ¢/ is defined as

T T T T
1.0 N2 41.0
¥,
N ]
05+ * H05
¥,
—~0.5 4 -0.5
-1.0F +4-1.0
1 | i
0 2 4 6
t
Fig. 2. Linear and cubic splines with corresponding wavelets in time domain.
——— T
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©

Fig. 3. Linear and cubic splines with corresponding wavelets in frequency
domain indicating the low pass and band pass filter characteristics of scaling
functions and wavelets, respectively.

Walbo)= [ a7

where

Pap(t) = a—“/%(?) (18)

and a > 0 is the dilation and b, the translation parameters. The
normalization factor a~(*/?) is included so that |[1has || = |]4]]
where || - || implies L? norm.

To recover f(t) from (17), and for ¢ to be a window
function, the zeroth moment of 1/1 must vanish [11], namely
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[ee) ~
/ p(t) dt = (0) dt = 0, (19)
where 1[1 is the Fourier transform of 1&

The wavelet 1[1 is localized in both time as well as frequency.
By reducing a, the support of 1, reduces in time and hence
covers a large frequency range and vice-versa. Therefore. 1/a
is a measure of frequency. The parameter b, on the other hand,
indicates the location of the wavelet window in time. Thus by
changing (b, a), the whole time-scale plane can be covered.

The first step towards decomposing a function f(¢) is to
map the given function (in the form of one-dimensional data)
into a spline space. namely

f(t) — f]u(t) e Vur.

The approximate function fas(¢) can be decomposed as fol-
lows:

(20)

Jar() = gar—1 () + -+ gr—ar (&) + far—ar(t) 2D
where M’ < M, and
V2 )= (2t —k)
3
(22)

W, 3 g,(t) =) dly(2t— k),
k

The function g,(¢) gives the “details” at the level j, whereas
f;(t) gives the approximation of the original function at the
level j. which is coarser than that at the level 7 + 1.

The importance of this decomposition algorithm is that we
have

_ ko1
2792 d) = W fur (277 2—]> (23)
and, for any j < M,
ko1 E o1
(Wq/;gj)(z—v 2—1) = (Wq/]flu)<2_17 §;>, (24)

for all integers k.

From the highest level approximation coefficient sequence
{c}}, we can get the lower level sequences {c},} and {d}}
as follows:

- E: J+1
C?c = U2k—2Cy
¢
B i1
dy, = E bak—ecy .
12

where {ar} and {b;} are known once the B-spline and the
B-wavelet are fixed.

(25)

D. Scale-to-Frequency Mapping

The integral wavelet transform of a function gives its local
time-scale information. In order to get the time-frequency
information, we need to map the scale parameter to frequency.
There is no general way of doing so. However, as a first
approximation, we may consider the following mapping:

C

ar fi==
a

(26)

60 60

40 + 40

1/a

S 80 00000000000 BRORRSGEOEISICROERNOOETDTTREES

20 —20
L] L] L L L4 . L . . . . . L] . L
0 : 1 L i T 1 : t 1 0
0 0.2 0.4 0.6 0.8 1.0

b

Fig. 4. A typical time-scale grid from the standard wavelet decomposition
algorithm applied to a function with support [0, 1] and discretization step as
0.25. Only points in [0, 1] are shown.

where ¢ > 0 is a calibration constant. In this paper the constant
¢ has been determined based on the one-sided center (w})

and one-sided radius (A¢);) of the wavelet 'zﬂ(w), which are
defined as in [27]:

/ Wl ()2 dw
M i — 27

Wy =
/0 ()] dow
/0 (0 — w2 |(w) [ do
| 1P
0

For cubic spline we get wj = 5.164 and A1/3+ = 0.931.
Based on these parameters, we choose ¢ = 1.1. It is important
to point out that this value of ¢ may not be suitable for all
cases. Further research in this direction is required.

Aty = (28)

III. FINER TIME-SCALE RESOLUTION

The WT given by (23) are obtained at (k/27,1/27), which
is sufficient in the sense that all the information about the
function is contained in these coefficients. In other words the
function can be reconstructed from these coefficients. A typical
time-scale grid obtained from (23) is shown in Fig. 4. In Fig. 4,
we have plotted 1/a instead of a, but we will, for convenience,
call it time-scale plot. The function for which the time-scale
grid is shown has support as [0, 1] and has been discretized
with step size 277, hence mapped into V7. It is worth pointing
out here that there will be a few coefficients outside [0, 1] also
because of the finite support of the wavelet.

It is obvious from Fig. 4 that for visual display of the IWT,
which is very important for better observation of the function
behavior over the time-scale plane, one needs to compute the
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IWT on a dense set. In this section we give an outline of the
method to get a continuous plot. The mathematical details of
the method are given in [24].

The sequences {ay} and {bx} of (25) for splines and the
spline wavelets are infinite, although they decay exponentially
[11, pp. 200, 266]. In order to compute IWT efficiently, we
would like to use sequences {p;} and {g; }, which are, as is
clear from (13), finite, and this is equivalent to mapping the
original function into the dual spline space.

Ft) = falt) = > erd(Bt — k)
k
= &e(Bt — k). (29)
k
where ¢; and ¢; are related as [24]

b= 3 collt = £),9(t — k).

[4

(30)

and £ assumes finite values. (See [24] and [27].)
For linear and cubic splines, the relationship is given below:

m=2
. 1
¢ = 5(61—1 + 4c; + c141)- 3D
m=4
. 1
¢ = ﬁ(cl_?’ 4+ 120¢;_9 + 1191¢;_1 + 2416¢;
+ 1191¢i47 4 120c149 + c143). (32)

Having mapped the function into dual spline space, we
can replace ({ax}, {bx}) by ({(1/2)p-i}, {(1/2)q—x}) [11, p.
156]. So for real-valued functions, computation of WC at every
point (u,v) in the time-scale plane requires 5 multiplications
and 4 additions in case of linear spline and 11 multiplications
and 10 additions in case of cubic spline. To get the coefficient
for an approximate function at that point, the corresponding
requirements are 3 and 2 for linear spline and 5 and 4 for
cubic spline. For a FFT-based computation scheme, this is
not the case since both the function and the wavelet have
to be sampled with the same rate and the sampling rate is
determined by the highest frequency content of the function.
The sampling rate must be kept the same for each subsequent
scales in order to keep the function discretization fixed. As a
result, the complexity increases with increasing values of the
scale parameter a. Furthermore, even at the highest frequency
where the support of the wavelet is shortest in time, the number
of sampled data for wavelet will be significantly higher than
number of gg.

The time-resolution is bounded from above by the initial
level of approximation. In other words, if a function ig initially
mapped into Vi, then the highest time resolution is 1/2M
which can be maintained for each level j <M [24]-[26].
Observe that the time resolution given at level j by standard
method is 1/2?. The Algorithm (25) is modified to yield the
highest time-resolution. Details of the modified decomposition
algorithm can be found in [24] and [25].

L B B S A B R B
20 420
10 410
I 1
- ]
E 0 } } -0
—10F 4-10
—20} 4 -20
PSS R (RN SOVUS O YT SR N SN S SN S [N SO ST S T I S S W 1
0 10 20 30 40 50

t
Fig. 5. Linear function whose WT is shown in Figs. 6-8.

The results presented in the next section are for linear and
cubic splines. The method can be extended to any splines of
higher orders. For cubic spline, we use the local optimal order
spline interpolation to map the given data into appropriate
spline space, namely

F@) = fat) = ZcéﬂNl}(ZMt k). .
k
where
k+6 n
Cg[ — Z ’Uk+2—2'fl-f(W).
n=k-2

Coefficients {v;} are given in [11, p. 117]. The above inter-
polation formula is “local” and reproduces all the polynomials
of at most degree 3.

Unlike the case of linear splines where a function given at
integer points is mapped into Vjp, in the case of cubic splines
for the same data set, the function is mapped into V3. Hence,
for a given set of function values, IWT with cubic spline-
wavelet as the analyzing wavelet, gives time-resolution that is
of one level higher than the one obtained with linear splines.

For finer scale resolution, we use scaling functions and
wavelets that are stretched in time and which, therefore, cover
narrower frequency bands.

Let us define the new scaling function and the corresponding
wavelet as

8"(t) := (an,n) *$(annt)

P (L) = (an,N)l/qu(an,Nt% (34)

where
2N

N>0 and n=1,---,2V -1. (3%

an,N:n+2N7

Observe that 1/2 < o, v < 1. Applying (34), we get 2N 1
additional levels between two consecutive octaves [j, j + 1].
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-0.2

20

40

-0.2

b

(®)
Fig. 6. (a) WT of the function shown in Fig. 5 using linear spline wavelet for
a = 0.50. Direct integration is performed with f(t), the approximation of
the function of Fig. 5 at the level j = 2. (b) WT of the function shown in Fig.

5 using linear spline wavelet for a = 0.75. Direct integration is performed
with f2(t), the approximation of the function of Fig. 5 at the level j = 2.

The initial sequence ¢™ is mapped to ¢ for each n [24]

which implies that the function fys is mapped into faz,,,. Then
we proceed with the modified decomposition algorithm using
({pe}: {ae})-

It is to be pointed out here that unlike the mapping ¢™ —
¢M, the mapping ¢ — ¢ is not exact. However, for
practical purposes, the error is negligible provided that M is
sufficiently large.

Furthermore, it can be shown that for all inter-octave
scales, time resolution is m which is slightly worse than

1/2M __the time resolution for the octave levels. It is still better

T T v T
0.02 -+ —_ —40.02
Cubic Spline Direct Integration
a = 0.50 FIWT Algorithm
o4 —
-0.02F+ - —0.02
. I . 1 .
0 20 40
b
(@
T T T T T
°
0.04 - 0.04-
Cubic- Spline Direct Integration
a = 0.75 FIWT Algorithm
0.02 -0.02
olfe 1
o
=0 zu- : 0
°
—0.02F —+ -1-0.02
0
-0.04 - —0.04
1 | 2
0 20 40
b
(b)

Fig. 7. (a) WT of the function shown in Fig. 5 using cubic spline wavelet for
a = 0.50. Direct integration is performed with f3(t), the approximation of
the function of Fig. 5 at the level 7 = 3. (b) WT of the function shown in Fig.
5 using cubic spline wavelet for a = 0.75 . Direct integration is performed
with f3(¢), the approximation of the function of Fig. 5 at the level 7 = 3.

than the best resolution available using the standard algorithm,
in which case the highest resolution is 1/2* 1,

IV. RESULTS AND DISCUSSIONS

The results presented in this section are the centered integral
wavelet transform (CIWT) defined with respect to spline
wavelet 1, as

(Wﬂ)m f)(b7 a) = a7(1/2> /oo f(t)wm (? + t*) dt

(36)
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T T T
0.04 -10.04
Cubic Spline Direct Integration
90000
a = 0.75 FIWT Algorithm
0.02+ T - 0.02
<
=
2
o] 0
4
-0.02F T - —0.02
1 " 1
0 20 40

b

Fig. 8. WT of the function shown in Fig. 5 using cubic spline wavelet for
a = 0.75. Direct integration is performed with f3 1 (¢), the approximation of
the function of Fig. 5 atthelevel j =3, n = N = 1.

where
_ 2m — 1
= T

Note that in (36) the dual wavelet has not been used since we
are using ({px}, {gr}) sequences for decomposition.

The IWT as defined by (17) does not indicate the location of
discontinuity of a function properly, since wavelets as shown
in Fig. 2 and their duals are not symmetric with respect to zero.
The CIWT circumvents this problem by shifting the location
of the WC in the time-axis by at* towards the right.

Example 1: In order to compare the results obtained by the
method presented in this paper with the results obtained by
evaluating the integral of (36), we first take the linear function
that changes slope, as shown in Fig. 5.

The function is sampled with 0.25 as step size. So for
linear splines, it means that the function is mapped into Vj,
whereas for the cubic splines the function is mapped into Vj.
We choose N = 1, which gives one additional scale between
two consecutive octaves. It is clear from Figs. 6 and 7 that
both FIWT algorithm and direct integration give identical
results for wavelet coefficients for octave levels, but there
are errors in the results for inter-octave levels, as discussed
before.

The importance of moment property becomes clear from
Figs. 6 and 7. In both the linear and cubic cases, when the
wavelet is completely inside the smooth region of the function,
the WC are close to zero since the function is linear. Wherever
the function changes the slope, WC have larger magnitudes.
We also observe the edge-effects near ¢ = 0 and ¢t = 50. The
edge effects can be avoided by using special wavelets near
the boundaries [28]. If we use IWT instead of CIWT, then the
whole plot will be shifted towards the left and the shift will
continue to become larger for lower levels.

t* 37

i i I T
0.05 -10.05
=
N—

S0 0
-0.05 -0.05
1 1 1 1 I i 1 i 1
0 0.2 0.4 0.6 0.8 1.0
t

Fig. 9. Graph of the function given by (38).
sx1077}- T T T T ' ' J5x1077
a=1/128 i Linear Spline
1 Cubic Spline
0 : ' ‘h, i { 0
= “.
-5x1077F ; +-5x1077
3 n I 1 1 L 1 n 1
0 0.2 0.4 0.6 0.8

b

Fig. 10. 'WT of the function shown in Fig. 9 using linear and cubic spline
wavelets for a = 1/128. The edge effects are not shown.

For Figs. 6 and 7, the direct evaluation of (36) is done with
f2(t) and f3(t) respectively. In Fig. 8, the direct integration is
done with f51(t), which indicates that for inter-octave level
also, the FIWT algorithm gives identical results if compared
with the corresponding approximation function.

For Fig. 7(a), 440 wavelet coefficients have been computed.
The direct integration takes about 300 times more cpu time
than the FIWT algorithm. We wish to emphasize that the ratio
300 : 1 is minimum, since with the increase in scale parameter
a, the complexity of the direct integration method increases
exponentially while for the FIWT it remains almost constant.
Furthermore, in the FFT based algorithm, the complexity
increases with a.

Example 2: As a further example to highlight the im-
portance of the IWT in identifying the change in function
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behaviors, we consider the following function (see Fig. 9):
For y :=2{ - 1

{ —y(4y? + 16y +13) ¢ €]0,1/2]
fO) =1 I
—syy -1y -2) te(1/2,1].

Fig. 10 shows the WC for linear and cubic splines case. The
edge effect has not been shown. Once again, here, we observe
that for the cubic spline case, the WC are close to zero in
the smooth region of the function, however, for linear spline
case, the WC are nonzero in this region since the function is
of degree 3 in both intervals. This example shows that even
physically unnoticeable discontinuity can be detected using
the wavelet transform.

Example 3: As a final example, we find the wavelet trans-
form of experimental data obtained for transmission coefficient
of an X-band rectangular waveguide. The waveguide is excited
by a coaxial-line probe inserted through the center of the broad
side of the waveguide. The S3; parameter of the waveguide
is measured using 8510 network analyzer by sweeping the
input frequency from 2-17 GHz. The time domain waveform
is obtained by inverse Fourier transforming the frequency
domain data. The time response (upto a constant multiplier)
and the magnitude (in dB) of the frequency response are shown
in Fig. 11. It should be pointed out here that several low-
amplitude impulses appeared in the negative time axis, but they
have not been taken into account while performing the wavelet

(38)

WT of the experimental data for transmission coefficient of an X-band rectangular waveguide using cubic spline wavelet.

decomposition since they represent some unwanted signals
and can be removed from the plot by proper thresholding.
Furthermore, such omission will not have any significant effect
on the WC plot of Fig. 11 because of the local nature of
wavelet analysis.

The cut-off frequency and dispersive nature of the dominant
TEqo is well observed from its time-frequency plot. Because
of the guide dimension and excitation, the next-higher-order
degenerate modes are TE;; and TM;; with cut-off frequency
as 16.156 GHz. This does not appear on the plot. The plot
indicates some transmission taking place below the lower
frequency operation. There is a short pulse at ¢ = 0, which
contains all the frequency components and is almost nondis-
persive. These can be attributed to the system noise. No
further attempt has been made to isolate the effects of various
transitions used in the experiment. The thresholding for Fig. 11
has been done with respect to the relative magnitude (in dB) of
the local maximum of each frequency and global maximum.
Finally the magnitude of the wavelet coefficients has been
mapped to 8-bit gray scale levels.

A better time-frequency localization can be obtained by
using higher order spline wavelets. (See [27, ch. 4].)

V. CONCLUSION

In this paper we have presented a technique for efficient
computation of the integral wavelet transform of a finite-
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energy function on a dense set of the time-scale (time-
frequency) domain by using compactly supported spline-
wavelets. Unlike the case with the standard method, which is
applicable for binary scales only, our method can be used for
arbitrary scale parameters. A number of examples have been
included to highlight the important properties of the integral
wavelet transform. Finally, the experimental data obtained for
waveguide transmission have been analyzed, indicating the
dispersive nature of the mode propagation.
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